System Assessments

Like many universities across America, The University of Cincinnati had a major challenge having to operate aging central utility plants with older technology, reduced efficiencies and capacities, with chilled water equipment at the end of its service life. Even so, UC needed to maintain plant operations under diverse load conditions, including critical hospital utility demands that are currently expanding and in daily periods subject to energy tariff.

HVAC systems can consume thirty percent (30%) of the total building energy needed in library, student union and classroom facilities.  In laboratory and research facilities, the HVAC energy consumption can be up to sixty percent (60%). When one considers the data of traditional airside Energy Conservation Measures (ECMs), simple paybacks range from low-cost, quick paybacks to capital-intensive long paybacks. The ECMs range from simple strategies, such as night setback and/or supply air reset, to full air handler replacement or variable air volume from constant volume conversion. However, few ECMs deliver more than thirty-five percent (35%) savings for the entire university campus.
Manufacturers are under continual pressure to control costs without affecting operations or worker comfort and safety. Because energy ranks as one of the largest operating expenses, improving energy efficiency of mechanical cooling systems is one of the best ways to reduce operating costs. In a typical water-cooled chiller plant, the chiller itself accounts for most of the energy consumption. That’s why improving chiller efficiency is critical to controlling operating costs.
If you enjoy the occasional beverage from an aluminum can, there’s a decent chance the can was made by Ball Corporation, a container manufacturing giant with facilities across the world. The company’s facility in Saratoga Springs, New York, services beverage companies throughout the northeastern United States. The plant operates four production lines producing millions of aluminum cans per day.
A manufacturing site’s central utility plant (CUP) provides 24/7 cooling for critical R&D laboratories, critical manufacturing processes, data centers and office space. Over a period of several years, campus growth had significantly increased facility energy consumption, raising costs dramatically. Simultaneously, the host state enacted a legislation to deregulate utilities, a move potentially doubling the cost of electricity.
Hydronic balancing in industrial heating and cooling systems is an often overlooked final step in startup and commissioning of new and modified hydronic systems.  Insisting on a complete system balance upon startup of a new or modified system is an inexpensive insurance policy for any design engineer or installation contractor to protect their reputation against a system that is not performing to design conditions.  There are several methods of hydronic system balancing utilized in commercial and hospitality buildings, however, they are rarely found in the manufacturing and industrial environments.
Hydronic balancing in industrial heating and cooling systems is an often overlooked final step in startup and commissioning of new and modified hydronic systems.  Insisting on a complete system balance upon startup of a new or modified system is an inexpensive insurance policy for any design engineer or installation contractor to protect their reputation against a system that is not performing to design conditions.  There are several methods of hydronic system balancing utilized in commercial and hospitality buildings, however, they are rarely found in the manufacturing and industrial environments.
While the chiller is the heart of a chilled water system, its support system of components and controls are equally critical to maintain and manage to ensure the highest system efficiency levels are attained. Emphasis is often placed on the chiller since it is the most visible and typically the highest energy element of a chilled water system. Yet, if you look beyond the flanges, there’s an opportunity to improve delivery of chilled water to the airside or process loads and maximize system efficiency.  
Anecdotal reports from users of Tower Tech cooling towers across the U.S. have indicated the Tower Tech design provides substantial savings to the customer both in terms of lower chemical treatment requirements and substantial water savings. There are a number of mechanisms by which the Tower Tech design facilitates efficient, lower cost water treatment and usage. A few are described in this article.
Controlled cooling is an essential part of manufacturing polyethylene stretch film. The process starts with granulated polyethylene raw product with very low strength, and develops thin, clear, strong film used in a variety of applications.  It does this by melting, extrusion, “casting” and winding.  See Figure 1 for a typical system diagram.  “Casting” is forming and cooling at the same time. The extruded polymer is stretched and cooled on large, chrome-plated rollers with cooling water flowing inside. Thinner film is for manual use, like wrapping around food products.  Thicker, stronger product is made for machine use, like automatically wrapping pallets of concrete bags.
Chrysler’s Technology Center (CTC), located in Auburn Hills, MI, is home to some fourteen thousand employees responsible for keeping the automotive giant in motion. Completed in 1991, the complex is essentially a small city, encompassing 5.3 million square feet situated on over 500 acres. In addition to corporate offices, the facility houses a full laboratory level of various wind tunnels with thermal testing capabilities, a 1.8-mile evaluation road, a noise/vibration facility, an electromagnetic compatibility center, an environmental test center (able to create rain, snow and extreme temperatures), and a pilot production plant.