Our simplified business model is to melt plastic and cool it back into the form we want – and cooling water makes this happen. We need to optimize chilled water temperature and flow to ensure that our production machines make consistent finished products. In molding application, we cool the plastic through conduction and convection directly. Blown film is different in that cooling-water cools the air and then an air handler cools the plastic.

Free cooling is a type of process cooling system design that takes advantage of ambient temperatures to reduce or even eliminate chiller operation. Chillers consume large amounts of energy; so, reducing a chiller’s operating hours per year can result in significant bottom line savings for your company.  In this article, we will review a typical free cooling system design, some of the considerations for your system, and finally, how these considerations impact your system’s ability to capitalize on the free cooling operation.

Hospitals account for nearly 5% of the total energy use in the United States each year. The average 200,000 ft2 facility spends about $13,600 per bed, or roughly $680,000 annually, on energy costs. Why so much? Operating twenty-four hours a day, thousands of employees, patients, and visitors cycle through campus buildings daily. Additionally, hospitals maintain high ventilation rates to lessen the risk of microbial contamination; the conditioning requirements of this outdoor air represents significant energy usage. Lastly, the use of sophisticated imaging equipment, electronic health record systems and other operations generates heat that must be compensated for via the site’s cooling load.

A technology called, “cool storage” offers a reliable, cost-effective means of managing electricity costs while ultimately helping to limit greenhouse gas emissions. The technology allows facilities to take advantage of less costly electricity available at night and functionally save that energy for use at a later time. Cool storage achieves this performance by using ice or chilled water as a medium for storing and deploying energy.